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I. INTRODUCTION 

A multiplicative lattice L is a complete lattice provided with 

commutative, associative and join distributive 

multiplication in which the largest element 1 acts as a 

multiplicative identity. An element a∈ L is called proper if a 

< 1. A proper element p of L is said to be prime if ab≤ p 

implies a ≤ p or b ≤ p. If a∈ L, b ∈ L, 

(a : b) is the join of all elements c in L such that cb≤ a. A 

properelement p of L is said to be primary if ab≤ p implies a 

≤ p or𝑏𝑛≤ p for some positive integer n. If a∈ L, then √𝑎  = 

˅{x ∈ 𝐿∗/ 𝑥𝑛≤ a, n ∈ Z+}. An element a ∈ L is called a 

radical element ifa = √𝑎. An element a∈ L is called 

compact if a 𝑎 ≤ ⋁ 𝑏𝛼𝛼  implies a ≤ 𝑏𝛼1
˅𝑏𝛼2

˅ …  ˅𝑏𝛼𝑛
 for 

some finite subset {𝛼1,𝛼2 … 𝛼𝑛}. Throughout this paper, L 

denotes a compactly generated multiplicative lattice with 1 

compact in which every finite product of compact element 

is compact. We shall denote by 𝐿∗, the set of compact 

elements of L. 

An element i∈ L is called 2-absorbing element if abc≤i 

impliesab≤i or bc≤i or ca≤i. A proper element i∈ L is called 

2-absorbing primary if for all a, b, c ∈ L, abc≤i implies 

either ab≤i or bc≤√𝑖 or ca≤√𝑖. This concept was defined by 

U.Tekir et.al. in [7]. It is observed that every prime element 

is 2-absorbing. An element i∈ L is called semi-prime if i 

=√𝑖. An element is i called   2-potent prime if ab ≤𝑖2 

implies a ≤i or b ≤i. (See [6]). Every 2-absorbing element of 

L is a 2-absorbing primary element of L. But the converse is 

not true. The element q = (12) is a 2-absorbing primary 

element of L but not 2-absorbing element of L. Also every 

primary element of L is a 2 absorbing primary element. But 

the converse is not true. The element q = (6) is a 2 

absorbing primary element of L but not a primary element 

of L, since L is lattice of ideals of the ring. R =< Z,+, .>. 

For all these definition one can refer [1],[4],[5]. 

 

 

 

 

II. PRIME AND PRIMARY ABSORBING 

ELEMENTS 

The concept of primary 2-absorbing ideals was introduced 

by Tessema et.al. [5]. We generalize this concept for 

multiplicative lattices. 

An element i∈ L is said to be weakly prime if 0 ≠ ab≤i 

implies a ≤i or b ≤i. 

It is easy to show that every prime element is 2- absorbing. 

Ex. The following table shows multiplication of elements in 

themultiplicative lattice L = 0, p, q, 1. 

 
 

In the above diagram 0, p, q are 2-absorbing. 

The concept of 2-absorbing primary ideals is defined by A. 

Badawi,U. Tekir, E. Yetkin in [6]. The concept was 

generalized for multiplicative lattices by F. Calliap, E. 

Yetkin, and U. Tekir [8]. Weslightly modified this concept 

and defined primary 2-absorbing element. 

Def.(2.1) An element i∈ L is said to be weakly 2-absorbing 

if0 ≠ abc≤i implies ab≤i or bc≤i or ca≤i. (See [7]). 

Def.(2.2) An element i of L is called primary 2-absorbing 

ifabc≤i implies ab≤i or bc ≤√𝑖 or ca≤√𝑖, for all a, b, c ∈ L. 

Ex. Every 2- absorbing element of L is primary 2-

absorbing. 

We obtain now the relation between primary 2-absorbing 

element and 2-absorbing element. 

Theorem (2.3) Ifi is semi-prime and primary 2-absorbing 

element of a lattice L, then i is 2-absorbing. 

Proof:- Suppose i is primary 2-absorbing. Let abc≤i. Then 

ab≤i or bc≤√𝑖 or ca≤√𝑖 where i= √𝑖. Therefore i is 2-

absorbing. 

_ 

Theorem(2.4) If i is semi-prime and 2-potent prime element 

of Lthen i is prime. 

Proof:- Let ab≤i. Then (𝑎𝑏)2 = 𝑎2 𝑏2≤𝑖2. Then 𝑎2 ≤i or 

𝑏2 ≤i,since i is 2-potent prime. This implies that a ≤√𝑖 or b 
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≤√𝑖. Buti being semi-prime, a ≤i or b ≤i. Hence iis a prime 

element. 

_ 

we note that :A prime element is 2-potent prime. 

 
 

Consider the lattice L of ideals of ring R =<𝑍8,+, . >. Then 

the only ideals of R are principal ideals (0), (2), (4), (1). 

Clearly, L = (0), (2), (4), (1) is compactly generated 

multiplicative lattice. The element (4) ∈ L is not prime but 

it is 2-potent prime. 

 

Remark(2.5) If i is semi-prime and primary then i is prime. 

_ 

Now we establish the relation between 2-potent prime and 

primary element. 

Theorem (2.6) Leti be a 2-potent prime. Then iis 

almostprimary if and only if i is primary. 

Proof:- Let i be a primary element and ab≤i, ab≰𝑖2. Then a 

≤I or b ≤√𝑖. So i is almost primary. Conversely, let i be an 

almostprimary element. Assume that ab≤i. If ab≰𝑖2, then a 

≤i orb ≤√𝑖. Suppose ab≤ 𝑖2. Then a ≤i or b ≤i≤ √𝑖, since i 

is2-potent prime. Therefore iis primary. 

 

We obtain the relation between semiprime and 2-absorbing 

element. 

 

Theorem(2.7) If i is semi-prime 2-potent prime element of 

L,then i is 2-absorbing. 

(Proof:-) Let abc≤i. Then (𝑎𝑏𝑐)2 = (𝑎𝑏)2𝑐2≤𝑖2. So (𝑎𝑏)2≤i 

or𝑐2≤i, since i is 2-potent prime. As i is semi-prime, ab≤√𝑖 

= i or c ≤√𝑖 = i. Hence ab≤i or bc≤i, ac ≤i and i is 2- 

absorbing. 

_ 

Remark (2.8) A 2-absorbing primary element need not be 2-

potent prime. 

_ 

Ex.-Consider L as in example𝑍30, the element (6) ∈ L is 

not2-potent prime. 

 
 

The next result gives the condition for a semi-prime element 

tobe almost primary. 

Theorem (2.9) Leti be a semi-prime element of L. Then 

iisalmost primary if i is weakly prime. 

Proof:- Suppose i is weakly prime. Let ab≤i, ab≰𝑖2. Now 

ab≰𝑖2implies ab ≠ 0. Hence a ≤i or b ≤i= √𝑖. 
_ 

Now we obtain a relation between primary element and 

weaklyprime element. 

Theorem(2.10)Let i be a semi-prime element. Then iis 

primaryif and only if i is weakly prime. 

Proof:- Assume that i is primary and 0 ≠ ab≤i. Then 𝑎𝑛 ≤i 

forsome n ∈ 𝑍+ or b ≤i. If b ≤i, we are done.If an≤i, then a 

≤√𝑖 = i, since i is semi-prime. Hence iis weaklyprime. 

Suppose iis weakly prime. Let ab≤i. If 0 ≠ ab, then a ≤i or b 

≤i≤√𝑖 and i is primary. If ab = 0 ≤i, a = 0 or b = 0 as L has 

no zero divisor. So a ≤i or b ≤√𝑖 and i is primary. 

 

_ 

Theorem (2.11) If an element i is both weakly primary 

andsemi-prime, then i is weakly prime. 

Proof:- Let 0 ≠ ab≤i. Then 𝑎𝑛 ≤i or b ≤i, since i 

weaklyprimary. If b ≰i, then an ≤i implies a ≤i= √𝑖. Hence i 

is weaklyprime. 

_ 

We now obtain a characterization of a weakly primary 

element. 

Theorem (2.12) An element i is weakly primary if and only 

if(i : x) ≤ √𝑖 or (i : x) = (𝑖2 : x) for all x ≰i. 

Proof:- Let i be weakly primary and x ≰i. Since 𝑖2≤i, we 

have(𝑖2 : x) ≤ (i : x). Let y ≤ (i : x), then yx≤i. If yx = 0, 

thenyx≤ 𝑖2 which implies y ≤ (𝑖2 : x). So in this case (i : x) 

= (𝑖2 : x). 

Suppose yx≠  0. Then yx≤i, x ≰i and i is weakly primary 

together imply 𝑦𝑛≤i for some n ∈ Z+. Hence y ≤√𝑖 and(i : 

x) ≤√𝑖. Conversely suppose (i : x) ≤√𝑖 or (i : x) = (𝑖2 : 

x)whenever x ≰i. Let 0 ≠ ab≤i. If b ≰i, we have nothing to 

prove. Otherwise b ≤i and obviously a ≤ (i : b). 

Case 1 If a ≤ (i : b) ≤ √𝑖, i is weakly primary. 

Case 2) Suppose (i : b) = (𝑖2 : b) and (i : b) ≰√𝑖. In this 

case,there exists z ≤ (i : b) but z ≰√𝑖. Therefore 𝑧𝑛≰i for all 

n ∈ Z+. 
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Now z ≤ (i : b) implies zb≤i for b ≰i. In particular, for b = 

z,𝑧2≤i, which is a contradiction. Hence the second case does  

notarises. 

_ 

Theorem(2.13) Let i and j be distinct weakly prime 

elementsof L. Then (i˄ j) is weakly 2- absorbing. 

Proof:- Let 0 ≠ abc≤ (i˄  j). Then abc≤i and abc≤ j. Since I 

and j are weakly prime elements, we have ab≤i or c ≤i and 

ab≤ j or c ≤ j. 

Case 1) If ab≤i and ab≤ j we have ab≤ (i˄  j). 

Case 2) If ab≤i and c ≤ j, then a ≤i or b ≤i and c ≤ j, since0 ≠ 

ab≤i and i is weakly prime. Thus ac ≤i, ac ≤ j or bc≤i 

andbc≤ j. This shows that ac ≤ (i˄  j) or bc≤ (i˄  j). 

Case 3) Let c ≤i and ab≤ j. This case is similar to case (2). 

Case 4) Suppose c≤i and c ≤ j. In this case ac ≤ j, ac ≤I and 

thus ac ≤ (i˄  j) together imply (i˄ j) is weakly 2-absorbing. 

_ 

Next we have a property of a weakly prime element. 

Theorem (2.14) Leti be a weakly prime element of L. Then 

I is weakly 2-absorbing. 

Proof:- Let 0 ≠ abc≤i. Then a ≤i or bc≤i. This again impliesa 

≤i or b ≤i or c ≤i. Hence ab≤i or bc ≤i or ac ≤i and i 

isweakly 2-absorbing. 

_ 

 

III. TWIN ZERO AND WEAKLY PRIME 

ELEMENTS 

The concept of a Twin zero of an ideal in a commutative 

rings withunity is introduced and studied in detail by 

A.Badawi et.al. [].  

Wegeneralize this concept for multiplicative lattice and 

obtain some 

results relating to this concept. 

Definition 3.1) Let L be a multiplicative lattice and i∈ 

L,wesay that (a, b) is a twin zero of i if ab = 0, a ≰i, b ≰i. 

 

Remark 3.2)If i is weakly prime element of L that is not a 

primeelement then i has twin zero (a,b) for some a, b ∈ L. 

_ 

Theorem 3.3)Let i be a weakly prime element of L and 

supposethat (a, b) is a twin zero of i for some a, b ∈ L. Then 

ai = bi = 0. 

Proof:- Suppose ai ≠  0. Then there exists c ≤i such that ac ≠  

0. Hence a(b˅c) ≠  0. Since (a, b) is a twin zero of i and ab 

= 0, we have a ≰i and b ≰i. As a ≰i, i is weakly prime and 

0 ≠  a(b˅c) ≤ ac ≤i. We must have b ≤ c ≤i .Hence b ≤i, a 

contradiction. Hence ai =0 and similarly it can be shown 

that bi = 0. 

 

 

Theorem 3.4)Leti be a weakly prime element of L. If i is 

notprime then 𝑖2 = 0. 

Proof:-Let (a, b) be twin zero of i. Hence ab =0, where a ≰i 

and b ≰i. Assume that 𝑖2≠  0. Suppose 𝑖1.𝑖2≠  0 for some 

𝑖1,𝑖2≤i. Then (a ˅𝑖1)(b ˅𝑖2) = 𝑖1.𝑖2≠  0 (by Theorem 3.3). 

Since 0 ≠(a ˅𝑖1)(b ˅𝑖2) ≤i and i is weakly prime, it follows 

that (a ˅𝑖1) ≤ior (b ˅𝑖2) ≤ i. Thus a ≤ i or b ≤i, which is a 

contradiction.Therefore 𝑖2 = 0. 

_ 

Theorem 3.5)Leti be a weakly prime element of L. If i is 

notprime then i≤√0 and i√0 = 0. 

Proof:- Suppose i is not prime. Then by Theorem (3.4), 𝑖2 = 

0 and hence i≤√0. Let a = √0. If a ≤i, then ai = 0, by 

Theorem(3.4). Now assume that a ≰i and ai≠  0. Hence ab≠  

0 for some b ≤i. Let m be the least positive integer such that 

𝑎𝑚  = 0. Since a(𝑎𝑚 −1 ˅ b) = ab ≠  0 and a ≰i, we have, 

(𝑎𝑚 −1 ˅ b) ≤i. Since 0 ≠ 𝑎𝑚−1 ≤ i and i is weakly prime, we 

conclude that a ≤i, a contradiction. Thus ai =0 for all a ≤√0. 

Therefore i√0 = 0. 

_ 

Theorem 3.6)Let i be a weakly prime element of L and 

suppose(a, b) is twin zero of i. If ar ≤i for some r ∈ L, then 

ar = 0. 

Proof:- Suppose 0 ≠ ar ≤i for some r ∈ L. Since (a, b) is 

twinzero of i, ab =0 where a ≰i and b ≰i. As i is weakly 

prime and0 ≠ ar ≤ i, it follows that r ≤i. By Theorem (3.3), 

ai = bi = 0.Hence r ≤i implies ar = 0, a contradiction. 

Therefore ar =0. 

 

Theorem 3.7) Let i be a weakly prime element of L. 

Supposeab ≤i for some a, b ∈ L. If i has twin zero 𝑎1,𝑏1 for 

some 𝑎1≤ aand 𝑏1≤ b then ab =0. 

Proof:- Suppose (𝑎1,𝑏1) is a twin zero of i for some 𝑎1 ≤ a 

and 𝑏1≤ b and assume that ab ≠  0. Hence cd ≠ 0 for some c 

≤a andd ≤ b. Now 0 ≠ cd ≤ ab ≤i, where i is weakly prime. 

Hence c ≤ior d ≤i. Without loss of generality, we may 

assume that c ≤i. ByTheorem (3.4), 𝑖2 = 0. If d ≤i then c ≤ i 

implies cd ≤𝑖2 = 0 andhence cd = 0, a contradiction. 

Therefore d ≰i. Next ab ≤ i, d ≤ bimplies ad ≤i. Also 𝑎1≰i 

gives a ≰i. As i is weakly prime a ≰i,d ≰i and ad ≤i implies 

ad = 0. Since (𝑎1˅ c)d = 𝑎1d ˅cd = cd ≠  0.Now 0 ≠  (𝑎1 ˅ 

c)d = cd ≤ i, i is weakly prime, d ≰ i together imply𝑎1 ˅ c ≤ 

i. So 𝑎1≤i, a contradiction. Hence ab = 0. 

_ 

The following result is proved by Calliap et.al.[9] 

But this result is an outcome of the results proved above 

whoseproof is different. 

Corollary 1) Let p and q be weakly prime elements of L 

whichare not prime then pq = 0. 

Proof:- By Theorem (3.5), p, q ≤√0. Hence pq ≤p√0 = 0 

(ByTheorem 3.5). Thus pq = 0. 

 

Triple zeros of weakly 2-absorbing elements: 

 

The concept of a triple zero of a weakly 2-absorbing ideal 

and free triple zero of weakly 2-absorbing ideal in a 

commutative ring is defined and studied by A. Badawi 

Certain Generalized Prime Elements  et.al.[20]. The concept 

of a triple zero of a weakly 2-absorbing primary element is 

defined and studied by C.S.Manjarekar et.al.[54]. We 

extend the concept of a triple zero and free triple zero of a 
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weakly 2-absorbing element in a compactly generated 

multiplicative lattices and obtain their properties.  

Definition (3.9) Let i be a weakly 2-absorbing element of a 

multiplicative lattice L and a, b, c ∈ L. We say that (a,b,c) is 

a triple zero of i if abc = 0, ab≰i, bc≰i,ac≰i. 

Definition (3.10) Let i be a weakly 2-absorbing element of 

a multiplicative lattice L and suppose 𝑎1𝑎2𝑎3  ≤i for some 

elements 𝑎1, 𝑎2,𝑎3 ∈ L. We say that i is a free triple zero 

with respect to 𝑎1𝑎2𝑎3  if (a,b,c) is not a triple zero of i for 

any a ≤𝑎1, 

b ≤𝑎2,c ≤𝑎3. 

Example 3.11) Let R = Z90. The set L = { i| i is an ideal of 

R} is a compactly generated multiplicative lattice. L = {0,< 

1 >,< 2 >,< 3 >,< 5 >,< 6 >, < 9 >,< 10 >,< 15 >,< 18 >,< 30 

>,< 45 >}. Then I =< 30 >2 L and 0 6=< 2 >< 3 >< 5 >_ I 

=< 30 > but < 2 >< 3 >*< 30 >, < 2 >< 5 >*< 30 >, < 3 >< 5 

>*< 30 >= I. Hence iis not weakly 2-absorbing element of 

L. 

Lemma 3.12) Let i be a weakly 2-absorbing element of L 

and suppose abd ≤ifor some elements a, b, d ∈ L such that 

(a,b,c) is not a triple zero of i for every c ≤ d. If ab≰i, then 

ad ≤i or bd≤i. 

Proof:-Suppose ad ≰i or bd≰i. Then a𝑑1≰i and b𝑑2≰i for 

some𝑑1 ,𝑑2 ≤ d.Since (a, b,𝑑1) is not a triple zero of i and 

ab𝑑1 ≤ i and ab≰i, a𝑑1≰i, we have b𝑑1 ≤i. Since (a, b,𝑑2) is 

not a triple zero of i and ab𝑑2 ≤i and ab≰ i, b𝑑2≰i, we have 

a𝑑2 ≤i. Now since (a, b, (𝑑1 ˅𝑑2)) is not a triple zero of i 

and ab(𝑑1 ˅𝑑2) ≤i and ad ≰i, we have a(𝑑1 ˅𝑑2) ≤ i or 

b(𝑑1˅ 𝑑2) ≤i. Suppose a(𝑑1 ˅𝑑2) = a𝑑1 ˅ a𝑑2 ≤i. Since a𝑑2 

≤i and a𝑑1 ≤i, we have a contradiction. Now suppose b(𝑑1 

˅𝑑2) = b𝑑1 ˅ b𝑑2 ≤i. Since b𝑑1≤ i and b𝑑2≤i, we have a 

contradiction. Hence ad ≤ i or bd ≤i. 

 

Corollary 3.13) Let i be a weakly 2-absorbing element of L 

and suppose 𝑎1𝑎2𝑎3  ≤i for some elements 𝑎1,𝑎2, 𝑎3 ∈ L 

such that i is a free triple zero with respect to 𝑎1𝑎2 𝑎3. Then 

if a ≤𝑎1 , b ≤𝑎2, c ≤𝑎3, then ab ≤i or bc≤ i or ac ≤i. 

Proof:- Since i is a free triple zero with respect to 𝑎1𝑎2 𝑎3. It 

follows that (a, b, c) is not a triple zero of i for every a ≤𝑎1, 

b ≤𝑎2, c ≤𝑎3. We have abc≤𝑎1𝑎2 𝑎3 ≤i. Since (a, b, c) is not 

a triple zero of i we must have either ab ≤ i or bc ≤i or ac ≤i, 

ifabc = 0. If abc≠ 0 then 0  ≠abc ≤ i implies ab ≤ i or bc ≤ i 

or ac ≤i. Since iis weakly 2-absorbing element of L. 

 

Theorem  3.14)i is weakly 2-absorbing element of L and 0 

≠ 𝑎1𝑎2𝑎3 ≤i, 𝑎1, 𝑎2, 𝑎3 ∈ L such that i is a free triple zero 

with respect to 𝑎1𝑎2𝑎3 . Then 𝑎1𝑎2≤i or 𝑎2 𝑎3≤ i or 𝑎1𝑎3≤i. 

Suppose 𝑎1𝑎2≰i, we claim that 𝑎1 𝑎3≤ i or 𝑎2𝑎3  ≤i. Suppose 

𝑎1𝑎3≰ i or 𝑎2 𝑎3≰i. Then there exist 𝑞1 ≤𝑎1 and 𝑞2 ≤𝑎2 

such that 𝑞1𝑎3≰ i and 𝑞2𝑎3≰i. Since q𝑞2𝑎3 ≤i and 𝑞1𝑎3≰ i, 

𝑞2𝑎3≰i, we have 𝑞1𝑞2 ≤i by lemma (3.12). Since 𝑎1𝑎2≰iwe 

have ab≰i for some a ≤𝑎1, b ≤𝑎2. Since ab𝑎3≤ i and ab≰i, 

we have a𝑎3≤i or b𝑎3 ≤ i by lemma (3.12). 

Proof:-Case 1) Suppose a𝑎3≤ i but b𝑎3≰i. Since 𝑞1b𝑎3≤i 

and b𝑎3≰i𝑞1𝑎3≰i and we have 𝑞1b ≤ i by lemma (3.12). 

Since (a ˅𝑞1)b𝑎3 ≤i𝑞1𝑎3≰i we conclude that 

(a ˅𝑞1)𝑎3≰i. Since b𝑎3≰i and (a ˅𝑞1)𝑎3≰i we conclude 

that (a ˅𝑞1)b ≤i by lemma(3.12). Since (a ˅ 𝑞1)b = ab ˅𝑞1b 

≤i, so ab ≤i, a contradiction. 

Case 2) Suppose b𝑎3 ≤ i but a𝑎3≰i. Since a𝑞2𝑎3≤i and 

a𝑎3≰ i, 𝑞2𝑎3≰i we conclude that a𝑞2≤ i. Since a(b˅ 𝑞2)𝑎3≤i 

and 𝑞2𝑎3≰i we conclude (b ˅ 𝑞2)𝑎3≰i.Since a𝑎3≰i, 

(b˅𝑞2)𝑎3≰ i, we conclude that a(b˅𝑞2) ≤ i by lemma (3.12). 

Since a(b ˅𝑞2) = ab ˅ a𝑞2 ≤ i, we have ab ≤i, a 

contradiction. 

Case 3) Suppose a𝑎3 ≤ i and b𝑎3≤i. Since 𝑞2𝑎3≰i, we 

conclude that (b˅𝑞2)𝑎3≰i. Since 𝑞1(b ˅𝑞2)𝑎3≤i and 𝑞1𝑎3≰i, 

(b ˅𝑞2)𝑎3≰i so 𝑞1(b ˅𝑞2) = 𝑞1b ˅𝑞1𝑞2≤ i by lemma (3.12). 

Since (𝑞1b˅𝑞1𝑞2) ≤ i we conclude b𝑞1≤i. As 𝑞1𝑎3≰i, (a˅ 

𝑞1)𝑎3≰i.Since (a ˅𝑞1)𝑞2𝑎3≰ i and 𝑞2𝑎3≰ i. (a ˅𝑞1)𝑎3≰i we 

have (a˅𝑞1)𝑞2 = a𝑞2 ˅𝑞1𝑞2 ≤i  so a𝑞2 ≤ i. Now since (a 

˅𝑞1)(b ˅𝑞2)𝑎3 ≤ i and (a ˅𝑞1)𝑎3≰ i and (b ˅𝑞2)𝑎3≰iwe 

have (a ˅𝑞1)(b ˅𝑞2) = ab ˅ a𝑞2 ˅ b𝑞1˅𝑞1𝑞2 ≤ i. By lemma 

(3.12) we concludethat ab ≤i, a contradiction. Hence 𝑎1𝑎3 ≤ 

i or 𝑎2 𝑎3≤i. 
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