Certain Generalized Prime elements

C. S. Manjarekar, A. N. Chavan

Shivaji University, Kolhapur, India

Abstract— In this paper we study different generalizations of prime elements and prove certain properties of these elements.

Keywords— Prime, primary elements, weakly prime elements, weakly primary elements, 2-absorbing, 2-potent elements

Math. Subject Classification Number:- 06F10, 06E20, 06E99.

I. INTRODUCTION

A multiplicative lattice L is a complete lattice provided with commutative, associative and join distributive multiplication in which the largest element 1 acts as a multiplicative identity. An element $a \in L$ is called proper if a < 1. A proper element p of L is said to be prime if $ab \le p$ implies $a \le p$ or $b \le p$. If $a \in L$, $b \in L$,

(a : b) is the join of all elements c in L such that $cb \le a$. A properelement p of L is said to be primary if $ab \le p$ implies a $\le p$ or $b^n \le p$ for some positive integer n. If $a \in L$, then $\sqrt{a} = \sqrt{x \in L_*/x^n \le a}$, $n \in Z+$. An element $a \in L$ is called a radical element if $a = \sqrt{a}$. An element $a \in L$ is called compact if a $a \le V_{\alpha} b_{\alpha}$ implies $a \le b_{\alpha_1} \lor b_{\alpha_2} \lor \ldots \lor b_{\alpha_n}$ for some finite subset $\{\alpha_{1,}\alpha_{2} \ldots \alpha_{n}\}$. Throughout this paper, L denotes a compactly generated multiplicative lattice with 1 compact in which every finite product of compact element is compact. We shall denote by L_* , the set of compact elements of L.

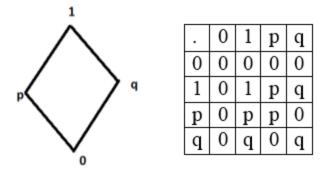
An element i∈ L is called 2-absorbing element if abc≤i implies $ab \le i$ or $bc \le i$ or $ca \le i$. A proper element $i \in L$ is called 2-absorbing primary if for all a, b, $c \in L$, $abc \leq i$ implies either ab $\leq i$ or bc $\leq \sqrt{i}$ or ca $\leq \sqrt{i}$. This concept was defined by U.Tekir et.al. in [7]. It is observed that every prime element is 2-absorbing. An element i∈ L is called semi-prime if i $=\sqrt{i}$. An element is i called 2-potent prime if ab $\leq i^2$ implies a $\leq i$ or b $\leq i$. (See [6]). Every 2-absorbing element of L is a 2-absorbing primary element of L. But the converse is not true. The element q = (12) is a 2-absorbing primary element of L but not 2-absorbing element of L. Also every primary element of L is a 2 absorbing primary element. But the converse is not true. The element q = (6) is a 2 absorbing primary element of L but not a primary element of L, since L is lattice of ideals of the ring. R = < Z, +, .>. For all these definition one can refer [1],[4],[5].

II. PRIME AND PRIMARY ABSORBING ELEMENTS

The concept of primary 2-absorbing ideals was introduced by Tessema et.al. [5]. We generalize this concept for multiplicative lattices.

An element $i \in L$ is said to be weakly prime if $0 \neq ab \leq i$ implies $a \leq i$ or $b \leq i$.

It is easy to show that every prime element is 2- absorbing. Ex. The following table shows multiplication of elements in the multiplicative lattice L = 0, p, q, 1.



In the above diagram 0, p, q are 2-absorbing.

The concept of 2-absorbing primary ideals is defined by A. Badawi,U. Tekir, E. Yetkin in [6]. The concept was generalized for multiplicative lattices by F. Calliap, E. Yetkin, and U. Tekir [8]. Weslightly modified this concept and defined primary 2-absorbing element.

Def.(2.1) An element $i \in L$ is said to be weakly 2-absorbing if $0 \neq abc \leq i$ implies $ab \leq i$ or $bc \leq i$ or $ca \leq i$. (See [7]).

Def.(2.2) An element i of L is called primary 2-absorbing if $ab \le i$ or $bc \le \sqrt{i}$ or $ca \le \sqrt{i}$, for all a, b, c \in L.

Ex. Every 2- absorbing element of L is primary 2-absorbing.

We obtain now the relation between primary 2-absorbing element and 2-absorbing element.

Theorem (2.3) If is semi-prime and primary 2-absorbing element of a lattice L, then i is 2-absorbing.

Proof:- Suppose i is primary 2-absorbing. Let $abc \le i$. Then $ab \le i$ or $bc \le \sqrt{i}$ or $ca \le \sqrt{i}$ where $i = \sqrt{i}$. Therefore i is 2-absorbing.

Theorem(2.4) If i is semi-prime and 2-potent prime element of Lthen i is prime.

Proof:- Let $ab \le i$. Then $(ab)^2 = a^2 b^2 \le i^2$. Then $a^2 \le i$ or $b^2 \le i$, since i is 2-potent prime. This implies that $a \le \sqrt{i}$ or b

 $\leq \sqrt{i}$. Buti being semi-prime, a $\leq i$ or b $\leq i$. Hence iis a prime element.

1 10

we note that :A prime element is 2-potent prime.

The next result gives the condition for a semi-prime element tobe almost primary.

Theorem (2.9) Leti be a semi-prime element of L. Then iisalmost primary if i is weakly prime.

Proof:- Suppose i is weakly prime. Let $ab \le i$, $ab \le i^2$. Now $ab \le i^2$ implies $ab \ne 0$. Hence $a \le i$ or $b \le i = \sqrt{i}$.

Now we obtain a relation between primary element and weaklyprime element.

Theorem(2.10)Let i be a semi-prime element. Then iis primaryif and only if i is weakly prime.

Proof:- Assume that i is primary and $0 \neq ab \leq i$. Then $a^n \leq i$ for some $n \in Z_+$ or $b \leq i$. If $b \leq i$, we are done. If $an \leq i$, then $a \leq \sqrt{i} = i$, since i is semi-prime. Hence iis weakly prime. Suppose iis weakly prime. Let $ab \leq i$. If $0 \neq ab$, then $a \leq i$ or $b \leq i \leq \sqrt{i}$ and i is primary. If $ab = 0 \leq i$, a = 0 or b = 0 as L has no zero divisor. So $a \leq i$ or $b \leq \sqrt{i}$ and i is primary.

Theorem (2.11) If an element i is both weakly primary and semi-prime, then i is weakly prime.

Proof:- Let $0 \neq ab \leq i$. Then $a^n \leq i$ or $b \leq i$, since i weaklyprimary. If $b \leq i$, then an $\leq i$ implies a $\leq i = \sqrt{i}$. Hence i is weaklyprime.

We now obtain a characterization of a weakly primary element.

Theorem (2.12) An element i is weakly primary if and only if(i : x) $\leq \sqrt{i}$ or (i : x) = (i² : x) for all x $\leq i$.

Proof:- Let i be weakly primary and $x \leq i$. Since $i^2 \leq i$, we have $(i^2 : x) \leq (i : x)$. Let $y \leq (i : x)$, then $yx \leq i$. If yx = 0, then $yx \leq i^2$ which implies $y \leq (i^2 : x)$. So in this case $(i : x) = (i^2 : x)$.

Suppose $yx \neq 0$. Then $yx \leq i$ and i is weakly primary together imply $y^n \leq i$ for some $n \in \mathbb{Z}_+$. Hence $y \leq \sqrt{i}$ and(i: x) $\leq \sqrt{i}$. Conversely suppose (i : x) $\leq \sqrt{i}$ or (i : x) = (i^2 : x)whenever $x \leq i$. Let $0 \neq ab \leq i$. If $b \leq i$, we have nothing to prove. Otherwise $b \leq i$ and obviously $a \leq (i : b)$.

Case 1 If $a \le (i : b) \le \sqrt{i}$, i is weakly primary.

Case 2) Suppose (i : b) = $(i^2 : b)$ and (i : b) $\leq \sqrt{i}$. In this case, there exists $z \leq (i : b)$ but $z \leq \sqrt{i}$. Therefore $z^n \leq i$ for all $n \in \mathbb{Z}_+$.

Consider the lattice L of ideals of ring $R = \langle Z_8, +, . \rangle$. Then the only ideals of R are principal ideals (0), (2), (4), (1). Clearly, L = (0), (2), (4), (1) is compactly generated multiplicative lattice. The element (4) \in L is not prime but it is 2-potent prime.

Remark(2.5) If i is semi-prime and primary then i is prime.

Now we establish the relation between 2-potent prime and primary element.

Theorem (2.6) Leti be a 2-potent prime. Then iis almostprimary if and only if i is primary.

Proof:- Let i be a primary element and $ab \le i$, $ab \le i^2$. Then a $\le I$ or $b \le \sqrt{i}$. So i is almost primary. Conversely, let i be an almostprimary element. Assume that $ab \le i$. If $ab \le i^2$, then a $\le i$ orb $\le \sqrt{i}$. Suppose $ab \le i^2$. Then a $\le i$ or $b \le i \le \sqrt{i}$, since i is 2-potent prime. Therefore iis primary.

We obtain the relation between semiprime and 2-absorbing element.

Theorem(2.7) If i is semi-prime 2-potent prime element of L,then i is 2-absorbing.

(Proof:-) Let $abc \le i$. Then $(abc)^2 = (ab)^2 c^2 \le i^2$. So $(ab)^2 \le i$ or $c^2 \le i$, since i is 2-potent prime. As i is semi-prime, $ab \le \sqrt{i}$ = i or $c \le \sqrt{i}$ = i. Hence $ab \le i$ or $bc \le i$, $ac \le i$ and i is 2absorbing.

Remark (2.8) A 2-absorbing primary element need not be 2-potent prime.

Ex-Consider L as in example Z_{30} , the element (6) \in L is not2-potent prime.

Now $z \le (i : b)$ implies $zb \le i$ for $b \le i$. In particular, for $b = z, z^2 \le i$, which is a contradiction. Hence the second case does notarises.

Theorem(2.13) Let i and j be distinct weakly prime elements of L. Then $(i \land j)$ is weakly 2- absorbing.

Proof:- Let $0 \neq abc \leq (i \land j)$. Then $abc \leq i$ and $abc \leq j$. Since I and j are weakly prime elements, we have $ab \leq i$ or $c \leq i$ and $ab \leq j$ or $c \leq j$.

Case 1) If $ab \le i$ and $ab \le j$ we have $ab \le (i \land j)$.

Case 2) If $ab \le i$ and $c \le j$, then $a \le i$ or $b \le i$ and $c \le j$, since $0 \ne ab \le i$ and i is weakly prime. Thus $ac \le i$, $ac \le j$ or $bc \le i$ and $bc \le j$. This shows that $ac \le (i \land j)$ or $bc \le (i \land j)$.

Case 3) Let $c \le i$ and $ab \le j$. This case is similar to case (2). Case 4) Suppose $c \le i$ and $c \le j$. In this case $ac \le j$, $ac \le I$ and thus $ac \le (i \land j)$ together imply $(i \land j)$ is weakly 2-absorbing.

Next we have a property of a weakly prime element.

Theorem (2.14) Leti be a weakly prime element of L. Then I is weakly 2-absorbing.

Proof:- Let $0 \neq abc \leq i$. Then $a \leq i$ or $bc \leq i$. This again implies $a \leq i$ or $b \leq i$ or $c \leq i$. Hence $ab \leq i$ or $bc \leq i$ or $ac \leq i$ and i is weakly 2-absorbing.

_

III. TWIN ZERO AND WEAKLY PRIME ELEMENTS

The concept of a Twin zero of an ideal in a commutative rings withunity is introduced and studied in detail by A.Badawi et.al. [].

Wegeneralize this concept for multiplicative lattice and obtain some

results relating to this concept.

Definition 3.1) Let L be a multiplicative lattice and $i \in L$, we say that (a, b) is a twin zero of i if ab = 0, $a \leq i$, $b \leq i$.

Remark 3.2) If i is weakly prime element of L that is not a prime element then i has twin zero (a,b) for some a, $b \in L$.

Theorem 3.3)Let i be a weakly prime element of L and suppose that (a, b) is a twin zero of i for some $a, b \in L$. Then ai = bi = 0.

Proof:- Suppose $ai \neq 0$. Then there exists $c \leq i$ such that $ac \neq 0$. Hence $a(b \lor c) \neq 0$. Since (a, b) is a twin zero of i and ab = 0, we have a $\leq i$ and b $\leq i$. As a $\leq i$, i is weakly prime and $0 \neq a(b \lor c) \leq ac \leq i$. We must have $b \leq c \leq i$. Hence $b \leq i$, a contradiction. Hence ai = 0 and similarly it can be shown that bi = 0.

Theorem 3.4)Let ibe a weakly prime element of L. If i is notprime then $i^2 = 0$.

Proof:-Let (a, b) be twin zero of i. Hence ab =0, where a $\leq i$ and b $\leq i$. Assume that $i^2 \neq 0$. Suppose $i_1.i_2 \neq 0$ for some $i_1,i_2 \leq i$. Then (a $\forall i_1$)(b $\forall i_2$) = $i_1.i_2 \neq 0$ (by Theorem 3.3). Since $0 \neq (a \forall i_1)(b \forall i_2) \leq i$ and i is weakly prime, it follows

that $(a \lor i_1) \leq ior$ $(b \lor i_2) \leq i$. Thus $a \leq i$ or $b \leq i$, which is a contradiction. Therefore $i^2 = 0$.

Theorem 3.5)Let ibe a weakly prime element of L. If i is notprime then $i \le \sqrt{0}$ and $i\sqrt{0} = 0$.

Proof:- Suppose i is not prime. Then by Theorem (3.4), $i^2 = 0$ and hence $i \le \sqrt{0}$. Let $a = \sqrt{0}$. If $a \le i$, then ai = 0, by Theorem(3.4). Now assume that $a \le i$ and $ai \ne 0$. Hence $ab \ne 0$ for some $b \le i$. Let m be the least positive integer such that $a^m = 0$. Since $a(a^{m-1} \lor b) = ab \ne 0$ and $a \le i$, we have, $(a^{m-1} \lor b) \le i$. Since $0 \ne a^{m-1} \le i$ and i is weakly prime, we conclude that $a \le i$, a contradiction. Thus ai = 0 for all $a \le \sqrt{0}$. Therefore $i\sqrt{0} = 0$.

Theorem 3.6)Let i be a weakly prime element of L and suppose(a, b) is twin zero of i. If ar $\leq i$ for some $r \in L$, then ar = 0.

Proof:- Suppose $0 \neq ar \leq i$ for some $r \in L$. Since (a, b) is twinzero of i, ab = 0 where $a \leq i$ and $b \leq i$. As i is weakly prime $and0 \neq ar \leq i$, it follows that $r \leq i$. By Theorem (3.3), ai = bi = 0. Hence $r \leq i$ implies ar = 0, a contradiction. Therefore ar = 0.

Theorem 3.7) Let i be a weakly prime element of L. Suppose $b \le i$ for some $a, b \in L$. If i has twin zero a_1, b_1 for some $a_1 \le a$ and $b_1 \le b$ then ab = 0.

Proof:- Suppose (a_1,b_1) is a twin zero of i for some $a_1 \le a$ and $b_1 \le b$ and assume that $ab \ne 0$. Hence $cd \ne 0$ for some $c \le a$ and $d \le b$. Now $0 \ne cd \le ab \le i$, where i is weakly prime. Hence $c \le i$ or $d \le i$. Without loss of generality, we may assume that $c \le i$. ByTheorem (3.4), $i^2 = 0$. If $d \le i$ then $c \le i$ implies $cd \le i^2 = 0$ and hence cd = 0, a contradiction. Therefore $d \le i$. Next $ab \le i$, $d \le b$ implies $ad \le i$. Also $a_1 \le i$ gives $a \le i$. As i is weakly prime $a \le i$, $d \le i$ and $ad \le i$ implies ad = 0. Since $(a_1 \lor c)d = a_1d \lor cd = cd \ne 0$. Now $0 \ne (a_1 \lor c)d = cd \le i$, i is weakly prime, $d \le i$ together imply $a_1 \lor c \le i$. So $a_1 \le i$, a contradiction. Hence ab = 0.

The following result is proved by Calliap et.al.[9]

But this result is an outcome of the results proved above whoseproof is different.

Corollary 1) Let p and q be weakly prime elements of L which are not prime then pq = 0.

Proof:- By Theorem (3.5), p, $q \le \sqrt{0}$. Hence $pq \le p\sqrt{0} = 0$ (ByTheorem 3.5). Thus pq = 0.

Triple zeros of weakly 2-absorbing elements:

The concept of a triple zero of a weakly 2-absorbing ideal and free triple zero of weakly 2-absorbing ideal in a commutative ring is defined and studied by A. Badawi Certain Generalized Prime Elements et.al.[20]. The concept of a triple zero of a weakly 2-absorbing primary element is defined and studied by C.S.Manjarekar et.al.[54]. We extend the concept of a triple zero and free triple zero of a weakly 2-absorbing element in a compactly generated multiplicative lattices and obtain their properties.

Definition (3.9) Let i be a weakly 2-absorbing element of a multiplicative lattice L and a, b, $c \in L$. We say that (a,b,c) is a triple zero of i if abc = 0, $ab \leq i$, $bc \leq i$, $ac \leq i$.

Definition (3.10) Let i be a weakly 2-absorbing element of a multiplicative lattice L and suppose $a_1a_2a_3 \leq i$ for some elements $a_1, a_2, a_3 \in L$. We say that i is a free triple zero with respect to $a_1a_2a_3$ if (a,b,c) is not a triple zero of i for any $a \leq a_1$,

 $b \leq a_2, c \leq a_3$.

Example 3.11) Let R = Z90. The set $L = \{ i | i \text{ is an ideal of } R \}$ is a compactly generated multiplicative lattice. $L = \{0, < 1 >, < 2 >, < 3 >, < 5 >, < 6 >, < 9 >, < 10 >, < 15 >, < 18 >, < 30 >, < 45 >\}$. Then I = < 30 > 2 L and $0 = < 2 > < 3 > < 5 >_ I = < 30 >$ but < 2 > < 3 > * < 30 >, < 2 > < 5 > * < 30 >, < 2 > < 5 > * < 30 >, < 3 > < 5 > * < 30 >, < 2 > < 5 > * < 30 >, < 3 > < 5 > = I. Hence iis not weakly 2-absorbing element of L.

Lemma 3.12) Let i be a weakly 2-absorbing element of L and suppose abd \leq ifor some elements a, b, d \in L such that (a,b,c) is not a triple zero of i for every $c \leq d$. If $ab \leq i$, then $ad \leq i$ or $bd \leq i$.

Proof:-Suppose ad $\leq i$ or bd $\leq i$. Then $ad_1 \leq i$ and $bd_2 \leq i$ for some $d_1, d_2 \leq d$.Since (a, b, d_1) is not a triple zero of i and $abd_1 \leq i$ and $ab \leq i$, $ad_1 \leq i$, we have $bd_1 \leq i$. Since (a, b, d_2) is not a triple zero of i and $abd_2 \leq i$ and $ab \leq i$, $bd_2 \leq i$, we have $ad_2 \leq i$. Now since (a, b, $(d_1 \lor d_2))$ is not a triple zero of i and $ab(d_1 \lor d_2) \leq i$ and $ad \leq i$, we have $a(d_1 \lor d_2) \leq i$ or $b(d_1 \lor d_2) \leq i$. Suppose $a(d_1 \lor d_2) = ad_1 \lor ad_2 \leq i$. Since $ad_2 \leq i$ and $ad_1 \leq i$, we have a contradiction. Now suppose $b(d_1 \lor d_2) = bd_1 \lor bd_2 \leq i$. Since $bd_1 \leq i$ and $bd_2 \leq i$, we have a contradiction. Hence $ad \leq i$ or $bd \leq i$.

Corollary 3.13) Let i be a weakly 2-absorbing element of L and suppose $a_1a_2a_3 \leq i$ for some elements $a_1,a_2, a_3 \in L$ such that i is a free triple zero with respect to $a_1a_2a_3$. Then if $a \leq a_1$, $b \leq a_2$, $c \leq a_3$, then $ab \leq i$ or $bc \leq i$ or $ac \leq i$.

Proof:- Since i is a free triple zero with respect to $a_1a_2a_3$. It follows that (a, b, c) is not a triple zero of i for every $a \le a_1$, $b \le a_2$, $c \le a_3$. We have $abc \le a_1a_2a_3 \le i$. Since (a, b, c) is not a triple zero of i we must have either $ab \le i$ or $bc \le i$ or $ac \le i$, if $abc \ne 0$. If $abc \ne 0$ then $0 \ne abc \le i$ implies $ab \le i$ or $bc \le i$ or $ac \le i$ or $ac \le i$. Since iis weakly 2-absorbing element of L.

Theorem 3.14)i is weakly 2-absorbing element of L and $0 \neq a_1a_2a_3 \leq i, a_1, a_2, a_3 \in L$ such that i is a free triple zero with respect to $a_1a_2a_3$. Then $a_1a_2\leq i$ or $a_2a_3\leq i$ or $a_1a_3\leq i$. Suppose $a_1a_2\leq i$, we claim that $a_1a_3\leq i$ or $a_2a_3\leq i$. Suppose $a_1a_3 \leq i$ or $a_2a_3 \leq i$. Suppose $a_1a_3 \leq i$ or $a_2a_3 \leq i$. Suppose $a_1a_3 \leq i$ or $a_2a_3 \leq i$. Then there exist $q_1 \leq a_1$ and $q_2 \leq a_2$ such that $q_1a_3 \leq i$ and $q_2a_3 \leq i$. Since $qq_2a_3 \leq i$ and $q_1a_3 \leq i$, $q_2a_3 \leq i$, we have $q_1q_2 \leq i$ by lemma (3.12). Since $a_1a_2 \leq i$ we have $a_3 \leq i$ or $ba_3 \leq i$ by lemma (3.12).

Proof:-Case 1) Suppose $aa_3 \le i$ but $ba_3 \le i$. Since $q_1ba_3 \le i$ and $ba_3 \le iq_1a_3 \le i$ and we have $q_1b \le i$ by lemma (3.12). Since $(a \lor q_1)ba_3 \le iq_1a_3 \le i$ we conclude that (a $\forall q_1 a_3 \leq i$. Since $ba_3 \leq i$ and (a $\forall q_1 a_3 \leq i$ we conclude that (a $\forall q_1 b \leq i$ by lemma(3.12). Since (a $\forall q_1 b = ab \forall q_1 b \leq i$, so $ab \leq i$, a contradiction.

Case 2) Suppose $ba_3 \leq i$ but $aa_3 \leq i$. Since $aq_2a_3 \leq i$ and $aa_3 \leq i$, $q_2a_3 \leq i$ we conclude that $aq_2 \leq i$. Since $a(b \lor q_2)a_3 \leq i$ and $q_2a_3 \leq i$ we conclude ($b \lor q_2)a_3 \leq i$.Since $aa_3 \leq i$, $(b \lor q_2)a_3 \leq i$, we conclude that $a(b \lor q_2) \leq i$ by lemma (3.12). Since $a(b \lor q_2) = ab \lor aq_2 \leq i$, we have $ab \leq i$, a contradiction.

Case 3) Suppose $aa_3 \leq i$ and $ba_3 \leq i$. Since $q_2a_3 \leq i$, we conclude that $(b \lor q_2)a_3 \leq i$. Since $q_1(b \lor q_2)a_3 \leq i$ and $q_1a_3 \leq i$, $(b \lor q_2)a_3 \leq i$ so $q_1(b \lor q_2) = q_1b \lor q_1q_2 \leq i$ by lemma (3.12). Since $(q_1b \lor q_1q_2) \leq i$ we conclude $bq_1 \leq i$. As $q_1a_3 \leq i$, $(a \lor q_1)a_3 \leq i$.Since $(a \lor q_1)q_2a_3 \leq i$ and $q_2a_3 \leq i$. ($a \lor q_1)a_3 \leq i$ we have $(a \lor q_1)q_2 = aq_2 \lor q_1q_2 \leq i$ so $aq_2 \leq i$. Now since (a $\lor q_1)(b \lor q_2)a_3 \leq i$ and $(a \lor q_1)a_3 \leq i$ and $(b \lor q_2)a_3 \leq i$ we have $(a \lor q_1)(b \lor q_2) = ab \lor aq_2 \lor bq_1 \lor q_1q_2 \leq i$. By lemma (3.12) we conclude that $ab \leq i$, a contradiction. Hence $a_1a_3 \leq i$ or $a_2a_3 \leq i$.

REFERENCES

- [1] D.D. Anderson, Abstract commutative ideal theory without chain condition, Algebra Universalis,6,(1976),131-145.
- [2] R.P. Dilworth , Abstract Commutative Ideal theory, Pacific. J. Math., 12, (1962)481-498.
- [3] F. Alarcon, D.D. Anderson, C. Jayaram, Some results on abstract commutative ideal theory, Periodica Mathemetica Hungerica, Vol 30 (1), (1995),pp.1-26.
- [4] N. K. Thakre, C.S. Manjarekar and S. Maida, Abstract spectral theory II, Minimal characters and minimal spectrum of multiplicative lattices, Acta Sci.Math., 52 (1988) 53-67.
- [5] Tessema, Belayneh, Venkateshwarlu, Certain Generalized Prime Ideals InBoolean like Semirings,International J. of Algebra, Hikari Ltd., Vol.8,(2014)No.14,663-669.
- [6] U. Tekir, E. Yetkin, A. Badawi on 2 absorbing primary ideals in commutative rings, Bull korean Math. Soc., 51(2014), No.4, 1163-1173.
- [7] U. Tekir,E. Yetkin,C. Jayaram 2-absorbing and weakly 2-absorbing elements in multiplicatiove lattices, Communications in Algebra, 42,(2014),2338-2353.
- [8] U. Tekir, E. Yetkin, F. Callialp On 2-absorbing primary and weakly 2-absorbing elements in multiplicative lattices, Italian Journal of Pure and Applied Mathematics, 34-2005, 263-276.
- [9] C. Jayaram, U. Tekir, F.Callialp weakly prime elements in Multiplicative Lattices, Communications In Algebra 40, 2825-2840, 2012.